Quantum threshold for optomechanical self-structuring in a Bose-Einstein condensate.
نویسندگان
چکیده
Theoretical analysis of the optomechanics of degenerate bosonic atoms with a single feedback mirror shows that self-structuring occurs only above an input threshold that is quantum mechanical in origin. This threshold also implies a lower limit to the size (period) of patterns that can be produced in a condensate for a given pump intensity. These thresholds are interpreted as due to the quantum rigidity of Bose-Einstein condensates, which has no classical counterpart. Above the threshold, the condensate self-organizes into an ordered supersolid state with a spatial period self-selected by optical diffraction.
منابع مشابه
Solitons for nearly integrable bright spinor Bose-Einstein condensate
Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation, soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates. A small disturbance of the integrability condition can be considered as a small correction to the integrable equation. By choosing appropriate perturbation, the soli...
متن کاملHamiltonian chaos in a coupled BEC–optomechanical-cavity system
We present a theoretical study of a hybrid optomechanical system consisting of a Bose-Einstein condensate (BEC) trapped inside a single-mode optical cavity with a moving end mirror. The intracavity light field has a dual role: it excites a momentum side mode of the condensate, and acts as a nonlinear spring that couples the vibrating mirror to that collective density excitation. We present the ...
متن کاملCavity optomechanics with a trapped, interacting Bose-Einstein condensate
The dispersive interaction of a Bose-Einstein condensate with a single mode of a high-finesse optical cavity realizes the radiation pressure coupling Hamiltonian. In this system the role of the mechanical oscillator is played by a single condensate excitation mode that is selected by the cavity mode function. We study the effect of atomic s-wave collisions and show that it merely renormalizes p...
متن کاملPeriodic Quantum Tunneling and Parametric Resonance with Cigar-Shaped Bose-Einstein Condensates
We study the tunneling properties of a cigar-shaped Bose-Einstein condensate by using an effective 1D nonpolynomial nonlinear Schrödinger equation (NPSE). First we investigate a mechanism to generate periodic pulses of coherent matter by means of a Bose condensate confined in a potential well with an oscillating height of the energy barrier. We show that is possible to control the periodic emis...
متن کاملSelf-organization of a Bose-Einstein condensate in an optical cavity
The spatial self-organization of a Bose-Einstein condensate (BEC) in a high-finesse linear optical cavity is discussed. The condensate atoms are laser-driven from the side and scatter photons into the cavity. Above a critical pump intensity the homogeneous condensate evolves into a stable pattern bound by the cavity field. The transition point is determined analytically from a mean-field theory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 114 17 شماره
صفحات -
تاریخ انتشار 2015