Quantum threshold for optomechanical self-structuring in a Bose-Einstein condensate.

نویسندگان

  • G R M Robb
  • E Tesio
  • G-L Oppo
  • W J Firth
  • T Ackemann
  • R Bonifacio
چکیده

Theoretical analysis of the optomechanics of degenerate bosonic atoms with a single feedback mirror shows that self-structuring occurs only above an input threshold that is quantum mechanical in origin. This threshold also implies a lower limit to the size (period) of patterns that can be produced in a condensate for a given pump intensity. These thresholds are interpreted as due to the quantum rigidity of Bose-Einstein condensates, which has no classical counterpart. Above the threshold, the condensate self-organizes into an ordered supersolid state with a spatial period self-selected by optical diffraction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitons for nearly integrable bright spinor Bose-Einstein condensate

‎Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation‎, ‎soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates‎. ‎A small disturbance of the integrability condition can be considered as a small correction to the integrable equation‎. ‎By choosing appropriate perturbation‎, ‎the soli...

متن کامل

Hamiltonian chaos in a coupled BEC–optomechanical-cavity system

We present a theoretical study of a hybrid optomechanical system consisting of a Bose-Einstein condensate (BEC) trapped inside a single-mode optical cavity with a moving end mirror. The intracavity light field has a dual role: it excites a momentum side mode of the condensate, and acts as a nonlinear spring that couples the vibrating mirror to that collective density excitation. We present the ...

متن کامل

Cavity optomechanics with a trapped, interacting Bose-Einstein condensate

The dispersive interaction of a Bose-Einstein condensate with a single mode of a high-finesse optical cavity realizes the radiation pressure coupling Hamiltonian. In this system the role of the mechanical oscillator is played by a single condensate excitation mode that is selected by the cavity mode function. We study the effect of atomic s-wave collisions and show that it merely renormalizes p...

متن کامل

Periodic Quantum Tunneling and Parametric Resonance with Cigar-Shaped Bose-Einstein Condensates

We study the tunneling properties of a cigar-shaped Bose-Einstein condensate by using an effective 1D nonpolynomial nonlinear Schrödinger equation (NPSE). First we investigate a mechanism to generate periodic pulses of coherent matter by means of a Bose condensate confined in a potential well with an oscillating height of the energy barrier. We show that is possible to control the periodic emis...

متن کامل

Self-organization of a Bose-Einstein condensate in an optical cavity

The spatial self-organization of a Bose-Einstein condensate (BEC) in a high-finesse linear optical cavity is discussed. The condensate atoms are laser-driven from the side and scatter photons into the cavity. Above a critical pump intensity the homogeneous condensate evolves into a stable pattern bound by the cavity field. The transition point is determined analytically from a mean-field theory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 114 17  شماره 

صفحات  -

تاریخ انتشار 2015